The summaries are free for public
use. The Chronic Liver Disease
Foundation will continue to add and
archive summaries of articles deemed
relevant to CLDF by the Board of
Trustees and its Advisors.
Abstract Details
Multi-pathway targeted therapy of MASH-HCC using miR-22.
BACKGROUND: The treatment options for hepatocellular carcinoma (HCC) are limited, and there is no effective drug that can improve long-term survival rates. Complicated cocktails consisting of multiple medications with toxicities are frequently used to treat cancer. The current study addresses these challenges.
METHODS: The study uses metabolic dysfunction-associated steatohepatitis (MASH)-HCC and HCC mouse models established by transfecting the livers using myr-AKT1, NRasV12, and Sleeping Beauty transposase. AAV8-miR-22 was delivered to MASH-HCC and HCC to study its preventive and therapeutic effects. Spatial transcriptomic profiling revealed the signaling pathways affected by miR-22 according to histological locations.
RESULTS: miR-22 treatment effectively treated MASH-HCC and HCC. Treating mice with miR-22 before tumor initiation prevented oncogenesis. The promising anti-cancer effects were revealed by reduced tumor load, fibrosis, and splenomegaly, extending the survival time. miR-22 treatment generated anti-tumor immunity. The favorable treatment outcomes were accompanied by a reduction in dendritic cells, T and B cells, and plasma cells, which were expanded inside the tumors of MASH-HCC. In all animal trials, miR-22 improved metabolism and reduced glycolysis inside the tumors. Moreover, miR-22 profoundly inhibited extracellular matrix (ECM) and targeted MET, PDGF, tyrosine kinase signaling, and IGF pathways inside the tumors. Furthermore, the roles of miR-22 in blocking collagen formation and cross-assembly of collagen fibrils could be due to miR-22's effects in inhibiting Rho GTPase pathways, revealed at the tumor margin.
CONCLUSION: miR-22 generates anti-HCC effects by targeting many critical pathways in liver carcinogenesis in cancer and tumorigenic niches, potentially revolutionizing HCC treatment.