The summaries are free for public
use. The Chronic Liver Disease
Foundation will continue to add and
archive summaries of articles deemed
relevant to CLDF by the Board of
Trustees and its Advisors.
Abstract Details
What will it take to cure hepatitis B?
Hepatol Commun. 2023 Mar 24;7(4):e0084. doi: 10.1097/HC9.0000000000000084.eCollection 2023 Apr 1.
1Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan.
2College of Medicine, Chang Gung University, Taoyuan, Taiwan.
3Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA.
Abstract
The current treatment of chronic HBV infection, pegylated interferon-α (pegIFNα) and nucleos(t)ide analog (NA), can suppress HBV replication, reverse liver inflammation and fibrosis and reduce the risks of cirrhosis, HCC, and HBV-related deaths, but relapse is common when the treatment is stopped before HBsAg loss. There have been major efforts to develop a cure for HBV, defined as sustained HBsAg loss after a finite course of therapy. This requires the suppression of HBV replication and viral protein production and the restoration of immune response to HBV. Direct-acting antivirals targeting virus entry, capsid assembly, viral protein production and secretion are in clinical trials. Immune modulatory therapies to stimulate adaptive or innate immunity and/or to remove immune blockade are being tested. NAs are included in most and pegIFNα in some regimens. Despite the combination of 2 or more therapies, HBsAg loss remains rare in part because HbsAg can be derived not only from the covalently closed circular DNA but also from the integrated HBV DNA. Achievement of a functional HBV cure will require therapies to eliminate or silence covalently closed circular DNA and integrated HBV DNA. In addition, assays to differentiate the source of circulating HBsAg and to determine HBV immune recovery, as well as standardization and improvement of assays for HBV RNA and hepatitis B core-related antigen, surrogate markers for covalently closed circular DNA transcription, are needed to accurately assess response and to target treatments according to patient/disease characteristics. Platform trials will allow the comparison of multiple combinations and channel patients with different characteristics to the treatment that is most likely to succeed. Safety is paramount, given the excellent safety profile of NA therapy.